

The Evolution and Impact of Artificial Intelligence in Educational Tutoring Systems: A Systematic Review

¹Ankita Raz* & ²Dr. Manohar Kumar Das

*¹Research Scholar, Dept. of Education, Central University of Jharkhand
E-Mail: ankita.raz28@gmail.com

²Assistant professor, Dept. of Education, Central university of Jharkhand

DOI: doi.org/10.5281/zenodo.18205165

Accepted on: 29/12/2025

Published on: 10/01/2026

Abstract:

This systematic review covers the layout, working, project problems and future course of AI based totally digital tutors in education. With the development of AI technologies such as intelligent tutoring systems, machine learning, and natural language processing, they have emerged as disruptive technologies in educational environments with adaptive and personalized learning environments. These virtual tutors assess the learners' patterns and provide personalized feedback, cognitive, and emotional support. Literature reviews have pointed to AI-enhanced platforms, when appropriately based on pedagogical principles, as producing better academic results, especially for mathematics and problem-solving. The review identifies three main benefits: higher levels of personalization, immediate feedback, and greater reach. Moreover, AI ability to identify learning gaps and deliver iterative materials for student-governed pacing paves for personalized advancement amongst learners. But deepset hurdles remain for the generalizability of its findings, with chu widespread implications for transparency, data privacy, and access persistent technical deficits. The study points out that some components of effective instruction are human-specific, such as having empathy and understanding context, which the current AI systems aren't capable of excelling at. Such important connotations based on the mentioned findings lead us towards holistic technological integration, based human centered education, education advancement. These limitations should be taken into account in future research, which will hopefully provide guidance on better getting the responsible and equitable deployment of AI in learning environments.

Keywords: *AI based virtual-tutors, Intelligent Tutoring Systems (ITS), Artificial Intelligence in Education, Future Directions in AI Education, and Educational Technology.*

Introduction:

AI based virtual Tutors are online platforms or systems that employ artificial intelligence technologies to offer customized teaching and learning assistance for students. These systems use a combination of machine learning, natural language processing, and sentiment analysis algorithms to interact with students in real-time, providing tailored explanations, guidance, and feedback. These tutors provide personalized recommendations and interventions based on students' learning behaviors, their emotional state (emotion analysis), and progress in courses, in other words, they supplemented the cognitive and emotional dimensions of learning. Voice recognition and conversational AI are also important features that help enable natural interactions for an engaging and more immersive education experience (Aggarwal et al., 2023; Rathika et al., 2024). The promise of AI-powered virtual tutors is significant in the education sector as they could transform conventional learning spaces. It increases engagement and learning outcomes as the tailored lessons are based on the individual plans of each student. They provide immediate feedback and support, automate content generation and grading, and help solve educational inequality such as language barriers. Additionally, it also optimizes the learning process to make it more effective, flexible and accessible with adaptive assessments, improved student engagement and the optimization of administrative tasks through AI in education (Aballa Nkechi et al., 2024; Aggarwal et al., 2023; Alashwal, 2024).

This review aims to collate available literature around their creation and deployment, assess their impact on learning experiences, and explore their opportunities and challenges. This review seeks to inform how AI can enhance the quality and accessibility of education, thus contributing to the development of research and policy priorities that maximize positive impacts of AI in education. Furthermore, it explores issues of privacy, ethics, and infrastructure technology (Aballa Nkechi et al., 2024; Suntharalingam, 2024). The evolution and deployment of Artificial Intelligence (AI) in education is characterized by a complex and multifaceted history, punctuated by key milestones and technological advances. AI has evolved from the initial theoretical work done by Turing and McCarthy to various fields in education. Abstract AI has been one of the most talked about topics in recent years from personalised learning systems to intelligent tutoring systems and data-driven insights (Ahmad et al., 2024) the emphasis placed on this paradigm shift in teaching has evolved over the years.

AI-based education has also seen significant advances since the mid 1990s, with a large increase in both research and application activity emerging in the last few decades. Within this evolution, machine learning (ML), natural language processing (NLP), and computer vision (CV) technologies have emerged, and together they enable the development of the adaptive and personalized educational environments (Taşkin Bedizel, 2023). Such developments have increased the inclusive aspects of education (Ahmad et al., 2024), as various forms of learning have become open to people, including

disabled individuals with disabilities. One of the widely recognized uses of AI in education is an AI-driven virtual tutor. Among them are the systems facilitating Intelligent Tutoring (ITS), generative and interactive dialogue systems leveraging large language models such as GPT to generate content on-the-fly and provide real-time feedback customized to individual learner (Maity & Deroy, 2024; Silva & Janes, 2020). One of the most widespread developments of such technology is the use of AI-based personalized learning systems, which help tailor educational materials to the individual needs of the student and minimize their learning time by improving their learning efficiency (Katiyar et al., 2024).

Key features and capabilities of AI-based virtual tutors include:

Personalization and Adaptivity: Individualized content and pedagogy (Nasir et al., 2024; Silva & Janes, 2020) AI systems provide personalized learning experiences through content and pedagogy that adapts based on the need and learning styles of the individual students.

Real-time Feedback and Assessment: They offer such real-time feedback and adaptive assessments, which creates engagement and improves learning efficiency (Maity, & Deroy, 2024).

Administrative process automation: AI helps automate administrative processes (like grading) so that educators can spend more of their time and energy on more personal, valuable teaching. (Suntharalingam, 2024).

Online Active Learning: AI based technologies such as VR, AR and intelligent virtual agents would be able to yield an interactive learning environment in destination with more capabilities to capture student attention (Ahmad et al., 2024; Maity & Deroy, 2024).

Analytics based Insights: Big data, and analytics combined promote insights from artificial intelligence that boost student performance and even provide better directions for instructional decision-making and educational reforms (Pawar & Khose, 2024). The rapid growth of AI in education provides real opportunities for advancing educational applications and services, responding effectively to the current socioeconomic context, at the same time concerns of data privacy, algorithmic bias, and equitable access to AI technologies are raised (Amdan et al., 2024; Suntharalingam, 2024). This must be done in an organisational and sustainable way to ensure that the promise of AI in education can be sustainably and safely realised.

Effectiveness in One-on-One Instruction:

Personalization-oriented: Technology-driven interventions using artificial intelligence (AI) and adaptive learning platforms are effective pedagogical tools by providing personalized, real-time

feedback, accessibility, and adaptive learning path. The analysis below explains how these things add up to better education outcomes.

Adaptive learning systems: Use of artificial intelligence to design the content to individual learning needs and preferences. They use real-time data analytics to dynamically adjust challenge levels, pace, and content selection to personalize the learning experience for every learner (Er-Radi et al., 2023). Such a tailored model transcends the conventional one-size-fits-all approach enabling the learners to study at a speed they find comfortable way of learning (Ayeni et al., 2024).

Personalized Learning Pathways: AI-powered adaptive learning technologies are designed to adapt learning pathways on the go as learners progress, making them suitable to cater for different learning deliveries. These adaptations can be said to guarantee that learners are offered an appropriate degree of challenge and assistance while retaining interest and allowing them to master skills (Cui et al., 2018; Santos et al., 2024). These systems use machine learning algorithms so as to identify the learning behavior patterns and to adapt the teaching techniques to improve the learning outcomes (Er-Radi et al., 2023).

Immediate feedback and assessment: On-demand, customized feedback, is one of the main advantages of adaptive learning platforms. In addition, by giving students this feedback instantly, allows them to know what they are doing right as well as what they could work on thereby creating a more sensitive and efficient learning environment (Odman & Ahmed, 2024). Due to the in-depth evaluation on the learning trajectories of a student possessed by feedback systems powered with AI, they can supplement the classical formative assessment process to deliver more granular information about the possible interventions which can be adopted for a learner (Ayeni et al. 2024).

Accessibility and Availability: Adaptive platforms used in different learning environments have changed how quickly and easily personalized learning opportunities can be reached and incorporated into the learning. These types of technologies offer a flexible model of learning which appears to facilitate bridging the gap for students from diverse socio-economic backgrounds with a quality education tailored to their needs (Isaeva et al, 2025). AI driven tools can also help in custodial of accomodation and assistive technologies for students everything in education system appear more inclusive for students with disabilities (Adeleye et al., 2024).

While these features have their own benefits, the challenges of unequal access to technology, the need for thorough teacher training, and the concern of a possible ethical conflict (the use of AI) must all be dealt with in order to fully exploit the potential of these systems (Isaeva et al., 2025) However, the potential for these technologies to improve educational outcome effectiveness is still highly

encouraging, such as provision of personalized, adaptive and accessible learner centered experiences (Ayeni et al., 2024).

Student Support:

Providing Emotional and Motivational Support: Teachers play an important role in providing emotional and motivational support, which is a key to student engagement, especially during physical education (PE). This support is expected to facilitate behavioral and emotional engagement, which in turn leads to better educational outcomes (Guo et al., 2023).

Dealing with learning styles: Learning styles are often mentioned throughout the educational literature, but little to no evidence exists for their use in classroom practices (Pham, 2011; Winingar et al., 2019). Additionally, by using AI to provide tailored learning experiences accommodating the diverse needs of students, the education field can also evolve to become an even more diverse and inclusive environment (Mishra, 2024).

Scaffolding and Guidance: Scaffolding is a basic principle of good teaching, in which students are gradually guided to move from solution with help to solution without help. In technology-enhanced education as well as in conventional education, scaffolding promotes the cognitive development of students by supplying a well-prepared framework (Sharma & Hannafin, 2007). Scaffolding methods have also been used in the online context, suggesting their suitability for different types of student learning (Jumaat & Tasir, 2014).

Traditional Instruction and Differentiated Instruction: Pham (2011) states that to address the diversity in student learning, differentiated instruction, which emphasizes a student's readiness levels rather than their learning styles, is critical. In addition, these together with the use of AI in education brings new teaching strategies that provide features to aid traditional teaching such as providing instant feedback as well as enhancing alternate approaches to learning (Mishra, 2024).

Technical constraints: AI technologies are not infallible. They struggle with algorithmic bias and not being able to adapt to a changing environment. While AI shows promise as a tool for supporting diagnostics and personalized treatment, in the health-care field faces challenges with data privacy, scalability, and integration into existing medical workflows (Udegbe et al. 2024). Inclusive databases coupled with robust regulatory frameworks are therefore crucial for equitable and effective AI deployment in clinical settings, especially with respect to the management of infectious diseases (Sarantopoulos et al., 2024).

Behavioral Approach: All these AI systemic shades such as: artificial intelligence algorithmic biases, opacity and accountability of AI systems. These and other challenges necessitate transparent algorithms and strong ethical frameworks for building trust and fairness with AI systems (Shafik, 2024). AI ethical issues in business contexts - e.g., algorithm bias, data retention practices, and deficiency in user and developer empowerment (Oladele et al., 2024). AI needs ethics with the human touch in the education sector (Alali & Wardat, 2024) to get established in a more productive way by developing some guidelines and dialogues with the stakeholders.

Data privacy issues: This is where any industry using AI should naturally be worried about their data privacy. In turn, the healthcare sector relies on more mature cybersecurity infrastructures that secure the patient data that will be exposed as the AI systems are integrated into care processes (Udegbé et al., 2024). Similarly, generative AI application in education has its own share of data privacy protection and algorithmic biases problems (Alali & Wardat, 2024). It poses the issue of how to respond to these risks meaning in this sense, an amalgamation of basic AI servicing; like article examination, has utilized to secure user information (Keshishi & Hack 2023) with the standard anti-fraud solutions.

Lack of Human Touch: AI does not have the people skills and empathy that are natural to human. Nursing requires empathy, compassion, and the human touch, which AI cannot offer along with emotional intelligence and knowledge (Mohanasundari et al., 2023). Likewise, anxiety management-focused AI chatbots offer anonymity and accessibility, but they cannot replace human compassion that is needed in mental health treatment (Manole et al., 2024).

To overcome these challenges, we must find the right balance between leveraging the power of AI and maintaining the vital human elements. While the application of the budding tech for health and education is exceptional, the integration of AI into such sectors must come with clear ethical guidelines, strong privacy protection, and attention to keeping human empathy and interaction at the center of it all. By striking this balance, will the benefits of AI while its limits (Manole et al., 2024; Mohanasundari et al., 2023).

AI vs Human Tutors: This comparison also ranges widely, identifying strengths and weaknesses for both, and indicating how they may be able to work together in an educational environment. AI tutors, which are driven by intelligent tutoring systems and adaptive learning platforms, provide tailored learning experiences that evaluate student strengths and weaknesses, deliver customized lessons, and respond to the distinct learning style and needs of every student (Aggarwal et al., 2023; Cota-Rivera et al., 2024). They provide instant and tailored tutoring, making learning more accessible and effective (Alashwal, 2024).

Nonetheless, there are some limitations that AI systems have such as content quality issues and the evolution of soft skills which is important for holistic education (Yusuf et al., 2024). Moreover, there are ethical issues such as privacy, algorithmic bias, and the risk of students being overly reliant on these technologies for critical thinking and engagement (“Beyond Algorithms: Humanizing Artificial Intelligence for Personalized and Adaptive Learning,” 2024; Rane et al., 2024).

In comparison, human tutors offer the benefit of interpersonal connection, a key feature in building practical, social and emotional skills (Yusuf et al., 2024). They are able to appreciate the subtleties of individual student needs and provide praise, compassion, and inspiration on a level far beyond the scope of artificial intelligence. Finally, human tutors are capable of responding to teachable moments unexpected in their lesson plans, then cueing their learners to learn from informed contexts that often involve aspects of culture and social understanding (Mulenga & Shilongo, 2024).

AI in education in no way is designed to act as a substitute for actual educators; take what is good with AI and integrate it with what is best with human beings, creating a synergistic tool. This type of model can be used to inform what personalized learning experiences will best deliver sound education in terms of developing cognitive, social and emotional skills (Rizvi, 2023). Integrating the scalability and personalisation capability offered by AI with the people skills of human teachers can lead to more inclusive, enjoyable and productive learning environments (Yau et al., 2021).

Hybrid learning models combine artificial intelligence (AI) technologies and human interaction to meet different educational needs. While these models use AI to create dynamic assessments and personalized instruction, human tutors guide discussions, offer feedback, and respond to questions that require human judgement and creativity. Such a balanced approach, however, is not counterproductive as it reinforces both a holistic understanding of education while also being responsive to student challenges (Rizvi, 2023).

Of course, one fundamental aspect that only human tutors can provide is the emotional connection needed for a student to feel fulfilled. So, combining the artificial intelligence-driven personalized learning with the right human tutors can further alleviate the challenge of accessibility whilst ensuring the natural synergy between the emotional connection and knowledge transfer. By encouraging a synergistic use of their strengths, this hybrid strategy effectively addresses various challenges (Mulenga & Shilongo, 2024; Yau et al., 2021).

Case studies

The Impact of Online Learning During the COVID-19 Pandemic: A systematic review reveals mixed effects of online learning on students' engagement and academic achievement. Although some studies suggest that improved academic performance can be attributed to the flexibility of online learning, there have been problems such as, lower engagement, and decreased interaction. Although engagement is found to be an important feature of effective online learning environments that usually include some interactive elements or active student-teacher interaction (Akpen et al., 2024).

Gamification in Education: Gamification, or adding game design elements (point systems, leaderboards, etc.) has proven to increase engagement and learning outcomes for students, especially in math education. For example, Maryana et al. (2024) found that a gamified learning platform positively affected engagement, positive attitude towards learning, and students' academic performance, illustrating the possible motivational effects of gamified educational strategies.

AI-Driven Personalized Learning Systems: The introduction and integration of artificial intelligence in educational environments is changing the experiences and performance of students. As a result, academic results are improved because AI-powered customized learning systems provide tailored learning experiences which increases scholar motivation and engagement. They provide customized learning paths and, support a better, and more personalized learning experience (Zaharuddin et al., 2024).

Project-Based Online Learning: We showed that project-based online learning in combination with student engagement in an online course can dramatically improve academic performance. This type of instruction helps students engage and learn effectively as they can use what they know in real-world situations and have fun while doing it. This approach is especially useful in the area of entrepreneurship education because it provides students with theory as well as practice (Zen et al., 2022).

These papers emphasize the need for flexible and creative instructional strategies that aim to engage students and support their learning outcomes. Embracing case-based learning, online delivery, gamification, AI, and project-based approaches each with its own pros and cons can inform educators looking for ways to improve learning outcomes in a range of international settings.

Future Directions

Given these scenarios, the birth of AI tutoring is becoming critical in most for each student, one AI tutoring program as AI and machine learning will improve the traditional education and promote personalized and adaptive learning in various educational settings. AI technologies, in particular, like

intelligent tutoring systems (ITS), adaptive learning platforms, or generative AI, have successfully changed conventional educational methods into more active and student-centered approaches.

Large language models and AI-enabled tools, in general, enhances personalized learning and the provision to adapt and generate personalized content and feedback to every learner (Babu et al., 2023). They analyze data from every student and interaction to tailor individualized learning pathways to ensure that all learners can learn at their own pace and learn in ways that best suit their needs for optimal academic performance (Mustafa, 2024).

Future research and development in AI tutoring focuses on enhancing current system capabilities and overcoming limitations and challenges. The convergence of multimodal AI, combining visual, auditory and textual inputs, for instance, is likely to increase the interactivity and engagement of educational technologies (Maity & Deroy 2024). In addition, in response to recent critiques suggesting a lack of attention to the emotionality behind many learning contexts, projects targeting emotional intelligence in tutoring systems seek to bridge the emotional and motivational aspects of learning to offer nature-aligned support to students [6, 7]. However, these developments have also resulted in ethical challenges, especially with regards to data privacy and algorithmic bias that need to be cautiously addressed to promote responsible and fair adoption of AI (Ou, 2023; Storey & Wagner, 2023).

Integration of AI with other educational technologies such as VR/AR offers great opportunities for developing virtual environments for learning that will also help engage students and create real object handling in a context closer to the real world (Storey & Wagner 2024). The use of AI to track progress and performance of learners enables the data-driven choices that can then be used for further customizing instructional strategies and creating a fulfilling learning environment (Kayyali, 2024).

In short, the future of AI in education points towards greater personalization, better interoperability with various technologies, and with development of solutions for the ethical challenges. The focus: to develop adaptive, accessible, and engaging learning experiences that allow for learning outcomes to be improved and to be processed in a responsible manner where responsible AI-enhanced resources are used to serve the needs of all learners (Chen, 2024; Young, 2024).

Conclusion:

The research emphasises the importance of increasing dialogue between teachers and policy-makers to better translate the research and improve policy. As lack of communication and engagement with researchers is commonly observed by policymakers, this exemplifies the need to establish strategies to spread and implement research outcomes (White, 2016). This study contributes to an

emerging body of research about inclusive education through systematic review materials and methods. (Yang et al. 2025) outlines an integrated framework EducationEquityResearchVarious international and national contexts have recently drawn attention to the fundamental principles of inclusive education, not only in relation to people with disabilities, but also as an overarching model of education for all. At the same time, homeless students also academic risk and resilience has been discussed and target school strategies and targeted interventions have been recommended (Masten et al., 2015).

The results underscore the vital role of educational policies in informing classroom practices and the potential for systemic change through policy levers. In the case of educators, embedding research in teaching approaches can be a bridge to connect academic knowledge with the practice-based aspect of their work especially in niche areas like inclusive education. Policymakers need to nourish spaces for research use through collaborative strategies to increase the nature of ability to use research evidence (Uzochukwu et al., 2016; Yang et al., 2025). Finally, disparities in education can only be remedied if multiple constituencies are included in the policy formulation and implementation stages (Newman & Elbourne, 2004; Woulfin et al., 2015). In addition to this, we recommend future work exploring the dynamics that underpin researcher-practitioner-policy interplay to create strong models that promote the use of research in policy and practice. In addition, it is vital to assess the sustainability of inclusive education models, and the success of outreach approaches to connect research and policy (White, 2016; Yang et al., 2025). It could also be useful to explore the application of academic guidelines and reporting standards (e.g., REPOSE) to improve accessibility and usefulness of educational research (Newman & Elbourne, 2004). Research on how vulnerable student populations cope and do well despite educational risk could provide important information informing policy strategies to buffer educational risk (Masten et al., 2015).

References:

- Aballa Nkechi, A., A Eneh, O., & O Ojo, A. (2024). *Impact of Artificial Intelligence in Achieving Quality Education*. Intechopen. <https://doi.org/10.5772/intechopen.1004871>
- Adeleye, O., Eden, C., & Adeniyi, I. (2024). Innovative teaching methodologies in the era of artificial intelligence: A review of inclusive educational practices. *World Journal of Advanced Engineering Technology and Sciences*, 11(2), 069–079.
- Aggarwal, D., Sharma, D., & Saxena, A. B. (2023). Adoption of Artificial Intelligence (AI) For Development of Smart Education as the Future of a Sustainable Education System. *Journal of Artificial Intelligence, Machine Learning and Neural Network*, 36, 23–28. <https://doi.org/10.55529/jaimlnn.36.23.28>

- Ahmad, W., Shokeen, R., & Raj, R. (2024). *Artificial Intelligence* (pp. 459–520). Igi Global. <https://doi.org/10.4018/979-8-3693-5538-1.ch017>
- Akpen, C. N., Asaolu, S., Atobatele, S., Okagbue, H., & Sampson, S. (2024). Impact of online learning on student's performance and engagement: a systematic review. *Discover Education*, 3(1). <https://doi.org/10.1007/s44217-024-00253-0>
- Alali, R., & Wardat, Y. (2024). Opportunities and Challenges of Integrating Generative Artificial Intelligence in Education. *International Journal of Religion*, 5(7), 784–793. <https://doi.org/10.61707/8y29gv34>
- Alashwal, M. (2024). *EMPOWERING EDUCATION THROUGH AI: POTENTIAL BENEFITS AND FUTURE IMPLICATIONS FOR INSTRUCTIONAL PEDAGOGY*. 201–212. <https://doi.org/10.20319/ictel.2024.201212>
- Amdan, M., Janius, N., Kasdiah, M., & Jasman, M. (2024). Advancement of ai-tools in learning for technical vocational education and training (TVET) in Malaysia (empowering students and tutor). *International Journal of Science and Research Archive*, 12(1), 2061–2068. <https://doi.org/10.30574/ijjsra.2024.12.1.0971>
- Ayeni, O., Chisom, O., Hamad, N., Osawaru, B., & Adewusi, O. (2024). AI in education: A review of personalized learning and educational technology. *GSC Advanced Research and Reviews*, 18(2), 261–271. <https://doi.org/10.30574/gscarr.2024.18.2.0062>
- Babu, C. V. S., Yuvansankar, M., & Tharuneshwaran, K. (2025). *Personalized Learning and Student Engagement* (pp. 73–102). Igi Global. <https://doi.org/10.4018/979-8-3693-7195-4.ch004>
- Beyond Algorithms: Humanizing Artificial Intelligence for Personalized and Adaptive Learning. (2024). *International Journal of Innovative Research in Engineering and Management*, 11(5), 40–47. <https://doi.org/10.55524/ijirem.2024.11.5.6>
- Chen, Y. (2024). *Enhancing Language Acquisition: The Role of AI in Facilitating Effective Language Learning* (pp. 593–600). Atlantis Press Sarl. https://doi.org/10.2991/978-2-38476-253-8_71
- Cota-Rivera, E. I., Bernal Marín, L. A., González Correa, M. E., Herrera, A. M., Martínez Martínez, M. A. A., & Marquez Montenegro, M. Y. (2024). *Transforming Education With the Power of Artificial Intelligence* (pp. 113–140). Igi Global. <https://doi.org/10.4018/979-8-3693-1666-5.ch006>
- Cui, W., Thai, K.-P., & Xue, Z. (2018, November 1). *Performance Comparison of an AI-Based Adaptive Learning System in China*. <https://doi.org/10.1109/cac.2018.8623327>
- Er-Radi, H., Aammou, S., & Jdidou, A. (2023). PERSONALIZED LEARNING THROUGH

ADAPTIVE CONTENT MODIFICATION. *Conhecimento & Diversidade*, 15(39), 263–275. <https://doi.org/10.18316/rcd.v15i39.11153>

- Guo, Q., Samsudin, S., Abdullah, B., Farizan, N. H., Ramlan, M. A., Yang, X., & Gao, J. (2023). Relationship between Perceived Teacher Support and Student Engagement in Physical Education: A Systematic Review. *Sustainability*, 15(7), 6039. <https://doi.org/10.3390/su15076039>
- Isaeva, R., Mirzoeva, K., Mokliuk, M., Karasartova, N., & Dznunusnalieva, K. (2025). ENHANCING LEARNING EFFECTIVENESS THROUGH ADAPTIVE LEARNING PLATFORMS AND EMERGING COMPUTER TECHNOLOGIES IN EDUCATION. *Jurnal Ilmiah Ilmu Terapan Universitas Jambi*, 9(1), 144–160. <https://doi.org/10.22437/jiituj.v9i1.37967>
- Jumaat, N. F., & Tasir, Z. (2014). *Instructional Scaffolding in Online Learning Environment: A Meta-analysis*. 7, 74–77. <https://doi.org/10.1109/latice.2014.22>
- Katiyar, P. D. N., Tiwari, D. M., Singh, M. R., Shukla, M. N., Pratap, D. R., Awasthi, M. V. K., & Mishra, M. K. (2024). Ai-Driven Personalized Learning Systems: Enhancing Educational Effectiveness. *Educational Administration Theory and Practices*. <https://doi.org/10.53555/kuey.v30i5.4961>
- Kayyali, M. (2024). *The Future of AI in Education* (pp. 367–406). Igi Global. <https://doi.org/10.4018/979-8-3693-7220-3.ch013>
- Keshishi, N., & Hack, D. S. (2023). Emotional Intelligence in the Digital Age: Harnessing AI for Students' Inner Development. *Journal of Perspectives in Applied Academic Practice*, 11(3). <https://doi.org/10.56433/jpaap.v11i3.579>
- Maity, S., & Deroy, A. (2024). *Generative AI and Its Impact on Personalized Intelligent Tutoring Systems*. Center for Open Science. <https://doi.org/10.35542/osf.io/kawr5>
- Manole, A., Brînzaş, R., Manole, F., & Cârciumaru, R. (2024). An Exploratory Investigation of Chatbot Applications in Anxiety Management: A Focus on Personalized Interventions. *Information*, 16(1), 11. <https://doi.org/10.3390/info16010011>
- Maryana, M., Rahmi, H., & Halim, C. (2024). The Impact of Gamification on Student Engagement and Learning Outcomes in Mathematics Education. *International Journal of Business, Law, and Education*, 5(2), 1697–1608. <https://doi.org/10.56442/ijble.v5i2.682>
- Masten, A. S., Fiat, A. E., Labella, M. H., & Strack, R. A. (2015). Educating Homeless and Highly Mobile Students: Implications of Research on Risk and Resilience. *School Psychology Review*, 44(3), 315–330. <https://doi.org/10.17105/spr-15-0068.1>

- Mishra, M. S. (2024). Revolutionizing Education: The Impact of AI-Enhanced Teaching Strategies. *International Journal for Research in Applied Science and Engineering Technology*, 12(9), 9–32. <https://doi.org/10.22214/ijraset.2024.64127>
- Mohanasundari, S. K., Kalpana, M., Madhusudhan, U., Vasanthkumar, K., B, R., Singh, R., Vashishtha, N., & Bhatia, V. (2023). Can Artificial Intelligence Replace the Unique Nursing Role? *Cureus*, 15(12). <https://doi.org/10.7759/cureus.51150>
- Mulenga, R., & Shilongo, H. (2024). Hybrid and Blended Learning Models: Innovations, Challenges, and Future Directions in Education. *Acta Pedagogia Asiana*, 4(1), 1–13. <https://doi.org/10.53623/apga.v4i1.495>
- Mustafa, A. (2024). The future of mathematics education: Adaptive learning technologies and artificial intelligence. *International Journal of Science and Research Archive*, 12(1), 2594–2599. <https://doi.org/10.30574/ijusra.2024.12.1.1134>
- Nasir, M., Syukri, M., Adlim, A., & Hasan, M. (2024). UTILIZING ARTIFICIAL INTELLIGENCE IN EDUCATION TO ENHANCE TEACHING EFFECTIVENESS. *Proceedings of International Conference on Education*, 2(1), 280–285. <https://doi.org/10.32672/pice.v2i1.1367>
- Newman, M., & Elbourne, D. (2004). Improving the Usability of Educational Research: Guidelines for the REPOrting of Primary Empirical Research Studies in Education (The REPOSE Guidelines). *Evaluation & Research in Education*, 18(4), 201–212. <https://doi.org/10.1080/09500790408668319>
- Oladele, I., Orelaja, A., & Akinwande, O. T. (2024). Ethical Implications and Governance of Artificial Intelligence in Business Decisions: A Deep Dive into the Ethical Challenges and Governance Issues Surrounding the Use of Artificial Intelligence in Making Critical Business Decisions. *International Journal of Latest Technology in Engineering, Management & Applied Science*, 13(2), 48–56. <https://doi.org/10.51583/ijltemas.2024.130207>
- Osman, S. A., & Ahmed, Z. E. (2024). *Navigating AI Integration* (pp. 240–267). Igi Global.
- <https://doi.org/10.4018/979-8-3693-2728-9.ch011>
- Ou, S. (2024). Transforming Education: The Evolving Role of Artificial Intelligence in The Students Academic Performance. *International Journal of Education and Humanities*, 13(2), 163–173. <https://doi.org/10.54097/cc1x7r95>
- Pawar, G., & Khose, J. (2024). Exploring the Role of Artificial Intelligence in Enhancing Equity and Inclusion in Education. *International Journal of Innovative Science and Research Technology (IJISRT)*, 2180–2185.
- <https://doi.org/10.38124/ijisrt/ijisrt24apr1939>

- Pham, H. L. (2011). Differentiated Instruction And The Need To Integrate Teaching And Practice. *Journal of College Teaching & Learning (TLC)*, 9(1), 13–20. <https://doi.org/10.19030/tlc.v9i1.6710>
- Rane, N., Choudhary, S. P., Shirke, S., & Rane, J. (2024). Artificial Intelligence in Education: A SWOT Analysis of ChatGPT and Its Impact on Academic Integrity and Research. *Journal of ELT Studies*, 1(1), 16–35. <https://doi.org/10.48185/jes.v1i1.1315>
- Rathika, P., Anju, P., Parthipan, V., Yamunadevi, S., & Ponni, P. (2024). Developing an AI-Powered Interactive Virtual Tutor for Enhanced Learning Experiences. *International Journal of Computational and Experimental Science and Engineering*, 10(4). <https://doi.org/10.22399/ijcesen.782>
- Raza, S. A., Umer, B., & Qazi, W. (2019). Examining the impact of case-based learning on student engagement, learning motivation and learning performance among university students. *Journal of Applied Research in Higher Education*, 12(3), 517–533. <https://doi.org/10.1108/jarhe-05-2019-0105>
- Rizvi, M. (2023). Investigating AI-Powered Tutoring Systems that Adapt to Individual Student Needs, Providing Personalized Guidance and Assessments. *The Eurasia Proceedings of Educational and Social Sciences*, 31, 67–73. <https://doi.org/10.55549/epess.1381518>
- Santos, S. M. A. V., Meroto, M. B. D. N., Graciotto, C. D. M., Rodrigues, B. D. S., Dos Santos, M. P., De Almeida, C. S., Soeiro, J. T. P., & Amorim, L. A. S. (2024). Personalizing education: the role of adaptive technologies in individualized education. *CONTRIBUCIONES A LAS CIENCIAS SOCIALES*, 17(2), e5190. <https://doi.org/10.55905/revcon.17n.2-152>
- Sarantopoulos, A., Mastori Kourmpani, C., Yokarasa, A. L., Makamanzi, C., Antoniou, P., Spernovasilis, N., & Tsiotis, C. (2024). Artificial Intelligence in Infectious Disease Clinical Practice: An Overview of Gaps, Opportunities, and Limitations. *Tropical Medicine and Infectious Disease*, 9(10), 228. <https://doi.org/10.3390/tropicalmed9100228>
- Shafik, W. (2024). *Toward a More Ethical Future of Artificial Intelligence and Data Science* (pp. 362–388). Igi Global. <https://doi.org/10.4018/979-8-3693-2964-1.ch022>
- Sharma, P., & Hannafin, M. J. (2007). Scaffolding in technology-enhanced learning environments. *Interactive Learning Environments*, 15(1), 27–46. <https://doi.org/10.1080/10494820600996972>
- Silva, A. D. O., & Janes, D. D. S. (2020). Exploring the Role of Artificial Intelligence in Education: A Comprehensive Perspective. *Review of Artificial Intelligence in Education*, 1(00), e05. <https://doi.org/10.37497/rev.artif.intell.education.v1i00.5>

- Storey, V. A., & Wagner, A. (2024). Integrating Artificial Intelligence (AI) Into Adult Education. *International Journal of Adult Education and Technology*, 15(1), 1–15. <https://doi.org/10.4018/ijaet.345921>
- Suntharalingam, H. (2024). Enhancing Digital Learning Outcomes Through the Application of Artificial Intelligence: A Comprehensive Review. *International Journal of Innovative Science and Research Technology (IJISRT)*, 718–727. <https://doi.org/10.38124/ijisrt/ijisrt24apr530>
- Taşkin Bedizel, N. R. (2023). Evolving landscape of artificial intelligence (AI) and assessment in education: A bibliometric analysis. *International Journal of Assessment Tools in Education*, 10(Special Issue), 208–223. <https://doi.org/10.21449/ijate.1369290>
- Udegbé, F., Ebule, C., Ekesiobi, C., & Ebule, O. (2024). THE ROLE OF ARTIFICIAL INTELLIGENCE IN HEALTHCARE: A SYSTEMATIC REVIEW OF APPLICATIONS AND CHALLENGES. *International Medical Science Research Journal*, 4(4), 500–508. <https://doi.org/10.51594/imsrj.v4i4.1052>
- Uzochukwu, B., Onwujekwe, O., Mbachu, C., Okwuosa, C., Etiaba, E., Nyström, M. E., & Gilson, L. (2016). The challenge of bridging the gap between researchers and policy makers: experiences of a Health Policy Research Group in engaging policy makers to support evidence informed policy making in Nigeria. *Globalization and Health*, 12(3). <https://doi.org/10.1186/s12992-016-0209-1>
- White, S. (2016). Teacher education research and education policy-makers: an Australian perspective. *Journal of Education for Teaching*, 42(2), 252–264. <https://doi.org/10.1080/02607476.2016.1145369>
- Wininger, S. R., Norman, A. D., Redifer, J. L., & Ryle, M. K. (2019). Prevalence of Learning Styles in Educational Psychology and Introduction to Education Textbooks: A Content Analysis. *Psychology Learning & Teaching*, 18(3), 221–243. <https://doi.org/10.1177/1475725719830301>
- Woulfin, S. L., Gonzales, R., & Donaldson, M. L. (2015). District Leaders' Framing of Educator Evaluation Policy. *Educational Administration Quarterly*, 52(1), 110–143. <https://doi.org/10.1177/0013161x15616661>
- Yang, C., Xiu, Q., & Wang, T. (2025). Towards a Sustainable Future in Education: A Systematic Review and Framework for Inclusive Education. *Sustainability*, 17(9), 3837. <https://doi.org/10.3390/su17093837>
- Yau, K.-L. A., Goh, H. G., Chong, Y.-W., Wu, C., Ling, M. H., Syed, A. R., & Lee, H. J. (2021). Augmented Intelligence: Surveys of Literature and Expert Opinion to Understand Relations

Between Human Intelligence and Artificial Intelligence. *IEEE Access*, 9, 136744–136761.
<https://doi.org/10.1109/access.2021.3115494>

- Young, J. (2024). The Rise of Artificial Intelligence in Education. *International Journal of Innovative Research and Development*. <https://doi.org/10.24940/ijird/2024/v13/i2/feb24019>
- Yusuf, S., Durodola, R., Ocran, G., Yusuf, P., Abubakar, J., & Paul-Adeleye, A. (2024). Impact of AI on continuous learning and skill development in the workplace: A comparative study with traditional methods. *World Journal of Advanced Research and Reviews*, 23(2), 1129–1140. <https://doi.org/10.30574/wjarr.2024.23.2.2439>
- Zaharuddin, Z., Yao, G., & Yu, C. (2024). Enhancing Student Engagement with AI-Driven Personalized Learning Systems. *International Transactions on Education Technology (ITEE)*, 3(1), 1–8. <https://doi.org/10.33050/itee.v3i1.662>
- Zen, Z., Reflianto, R., Syamsuar, S., & Ariani, F. (2022). Academic achievement: the effect of project-based online learning method and student engagement. *Helijon*, 8(11), e11509. <https://doi.org/10.1016/j.helijon.2022.e11509>